
 Complexity – It's Simple Page 1 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

Provided by TryEngineering.org - www.tryengineering.org

L e s s o n F o c u s
This lesson allows students to playfully understand algorithms and complexity.

L e s s o n S y n o p s i s
The Complexity lesson allows students learn about complexity through illustrative games,
teamwork activities and design tasks. Students will gain an intuitive understanding of
different growth rates and how they determine the performance of algorithms such as
sorting. Advanced students can also develop skills in analyzing the complexity of
algorithms.

A g e L e v e l s
14 - 18

O b j e c t i v e s

 Learn about the growth of sequences
 Learn about the difference between complexity and runtime
 Learn fundamental algorithms in computer science
 Learn how good algorithm design can drastically improve performance

A n t i c i p a t e d L e a r n e r O u t c o m e s
As a result of this activity, students should develop an understanding of:

 the growth of sequences
 the importance of algorithm design
 sorting algorithms
 teamwork

L e s s o n A c t i v i t i e s
Students gain an intuitive understanding of complexity and runtime of algorithms through
illustrations with small rewards, teamwork activities and design tasks. More advanced
students are introduced to the mathematical concepts underlying the topic of complexity.

R e s o u r c e s / M a t e r i a l s

 Teacher Resource Documents (attached)
 Student Worksheets (attached)
 Student Resource Sheets (attached)

 Complexity – It's Simple Page 2 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

I n t e r n e t C o n n e c t i o n s

 TryEngineering: (www.tryengineering.org)
 Complexity Zoo:

(https://complexityzoo.uwaterloo.ca/Complexity_Zoo#sthash.1Gnn1E1Z.dpuf)
 P vs NP Problem: (http://www.claymath.org/millenium-problems/p-vs-np-

problem#sthash.1Gnn1E1Z.dpuf/)
 Moore's Law: (http://www.intel.com/content/www/us/en/silicon-

innovations/moores-law-embedded-technology.html)
 Algorithm Analysis:

(http://www.londoninternational.ac.uk/sites/default/files/computing-
samples/co2226_vol2_ch1.pdf#sthash.1Gnn1E1Z.dpuf)

 ITEA Standards for Technological Literacy: Content for the Study of Technology
(http://www.iteaconnect.org/TAA/)

 National Science Education Standards:
(http://www.nsta.org/publications/nses.aspx)

 Scaling (http://galileoandeinstein.physics.virginia.edu/lectures/scaling.html)

R e c o m m e n d e d R e a d i n g

 Growth of Sequences and Sorting Algorithms: Introduction to Algorithms by T. H.
Cormen et al. (ISBN: 0070131511)

 Dimensional Analysis: The Pleasures of Counting by T. W. Körner (ISBN:
0521568234)

O p t i o n a l W r i t i n g A c t i v i t y

 Compare different sorting methods and explain why you would prefer one over the
other.

 Write a short text on the importance of computational complexity in cryptography.

C r e d i t s
 This lesson plan was developed by Clemens Wiltsche, an IEEE Graduate Student

Member; Freilassing, Germany (Region 8), and Kevin Zemmer as part of the IEEE
TryComputing.org Lesson Plan Competition.

 Complexity – It's Simple Page 3 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

F o r T e a c h e r s :
T e a c h e r R e s o u r c e s

 Lesson Goal
The complexity lesson gives students the opportunity to learn about the growth of
sequences and its fundamental importance in algorithm design. Students will analyze,
develop and execute algorithms in a playful way. Advanced students can explore state-of-
the-art ideas to improve the complexity of sorting algorithms.

 Lesson Objectives
 Be able to describe how sequences differ in terms of how quickly they grow;
 Be able to use an algorithm to generate a sequence;
 Be able to predict the relative runtime speed of two algorithms given their

complexity;
 Use complexity and data set size to explain why one algorithm would be take less

time execute than another
 Materials
 Student Resource Sheets and Worksheets
 Cardboard to make numbered cards, or several decks of playing cards
 Reward items: Rice, small candy or other low-cost items. Taking rice as an

example, about 25 tablespoons are needed (this is a little less than 400 g)
 Preparation
 Make cards from cardboard or paper and number them sequentially starting from 1.

Three cards per student are required. Alternatively two or three decks of playing
cards can be used but the order of the cards has to be explained to the students.

 Procedure
1. Introduce the subject to the students by playing the reward game with them, which

is described in the teacher resource “Group Games”.
2. Hand out and discuss the student resource “The Growth of Sequences”. Its

understanding is vital for the rest of the lesson.
3. Test the understanding of the material with the student worksheet “The Growth of

Sequences”. Solutions can be found in the teacher resources.
4. Optional: Have students read the student resource “Algorithms” to get to know the

terminology used in Computer Science.
5. Play the number guessing game explained in the teacher resource “Group Games”.

Then hand out the student worksheet “A Number Guessing Game”. The solutions
for this are given in the teacher resources.

6. Finally, introduce the students to sorting algorithms by following the instructions on
the student worksheet “Sorting Algorithms”, i.e. deal out the cards and put the
students into the suggested group sizes. Answers to the questions are provided in
the teacher resources.

 Time Needed
 Two 45 minute sessions

 Advanced Options
 Advanced students can write a comparative essay on various sorting methods and

the explain criteria for preferring one method over the other.
 Advanced students can be asked to give arguments of the computational

complexity of the considered algorithms and why the performance of comparison
sort algorithms is fundamentally limited.

 Complexity – It's Simple Page 4 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

 Complexity – It 's Simple

F o r T e a c h e r s :
T e a c h e r R e s o u r c e s – G r o u p G a m e s

 Reward Game
The game consists of providing rewards, in form of small items, to the students. The
game is explained here with rice as an example, but it works equally well for other small
rewards.

Rice is given out in rounds. The goal of the game is to get as much rice as possible. The
amount of rice given out in each round is determined by one of two reward strategies:

Option 1: Every round, a teaspoon of rice will be dealt out.
Option 2: In the first round the reward is only a single grain of rice. Then, in each
successive round, the amount of rice given out is doubled.

Let each student choose one of the reward strategies and group the students according to
the choice they made.

Deal out the rewards round by round to each group. You could appoint a student in each
group to help count out the rice. Note that towards the end an exact count of grains is not
important.

After the first four rounds, ask the students to compare the cumulative reward. Do the
same after eight and twelve rounds. Then discuss the outcome of the game with the
students.

Students should get an intuitive understanding of the different growth rates. This can also
be related to the increase in computing power of modern microprocessors. According to
Moore's Law, the number of transistors that can be put on a chip doubles approximately
every two years. The students can be asked to think about the consequences of this
observation and whether it is possible that this growth continues much longer.

 Number Guessing Game

The aim of the game is to guess a number with as few tries as possible. The game is first
played with the whole class, and then the students will be put into pairs to investigate
their own strategies to solve the game.

Tell the students to stand up. Think of a number between 1 and 50 and don't tell it to the
students. They are now allowed to only ask questions such as “Is it 37?” or “Is it 20?” and
you may only answer with “yes” or “no” until they find the correct number. A student that
asks a question leading to a “no” answer will have to sit down and may not ask any more
questions until the game is finished. Note that all students might be sitting before the
game is finished. In this case you might decide to play the game again and discuss why it
did not work and that with this type of questions in the worst case 50 tries are required.

Now let the students have a try at developing their own strategies when they have more
useful questions available by letting them work on the student worksheet “A Number
Guessing Game”.

 Complexity – It's Simple Page 5 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

F o r T e a c h e r s :
T e a c h e r R e s o u r c e s (c o n t i n u e d)
S t u d e n t W o r k s h e e t : T h e g r o w t h o f s e q u e n c e s - S O L U T I O N

 Water Lilies
9 weeks. Since the number of lilies doubles every week, if at 9 weeks the pond is halfway
covered, it is completely covered after 10 weeks. An example for six weeks is given in the
teacher resource “Water Lilies”.

The growth of the sequence describing the area covered is exponential.

 How much can they carry?
2D surface areas grow quadratically with the length of the sides, while 3D items can grow
cubically (i.e. to the power of three). Therefore, the weight that a skeleton can carry is
proportional assuming that all sides are growing linearly a cubic sequence grows faster
than a quadratic one.

An increase in an animal's height can only be achieved by making that animal’s skeleton
of a material which is harder and stronger than for smaller animals, or by enlarging the
size of the animal's bones. Because of the small weight of an ant, its skeleton (and
muscles) are strong enough to carry ten to fifty times its own weight, while the same is
not true for humans. Think about a building’s weight supported by a pillar. If the upper
floors are too heavy for the stone pillar, it begins to crack and crumble. For a uniform
material, the weight it can carry is proportional to the cross-sectional area. So if you double
all the dimensions of the building its weight increases by 8 times, the pillars capacity will
only go up fourfold.

This can also be illustrated by considering a mouse falling down an elevator shaft. Due to
its small weight it can survive, while larger animals would not.

(Example adapted from T.W. Körner, The Pleasures of Counting, Cambridge University
Press, 1996)

 Complete the Sequences
The sequences are continued as follows, with the respective growth functions given in
parentheses:

• 2, 2, 2, 2, 2, 2 (2)
• 3, 6, 9, 12, 15, 18, 21 (3 x n)
• 4, 9, 16, 25, 36, 49 ((n + 1)2)
• 2, 5, 10, 17, 26, 37, 50
• 64, 96, 112, 120, 124, 126, 127

The first sequence grows slowest (its growth function is just a constant) while the third
sequence grows fastest (its growth function is quadratic). The fourth sequence also has a
quadratic growth function and thus grows at the same rate, but its individual items will
always be lower than those of the third sequence.

 Complexity – It's Simple Page 6 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

F o r T e a c h e r s :
T e a c h e r R e s o u r c e s (c o n t i n u e d)
S t u d e n t W o r k s h e e t : T h e g r o w t h o f s e q u e n c e s – W a t e r L i l i e s

 Complexity – It's Simple Page 7 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

F o r T e a c h e r s :
T e a c h e r R e s o u r c e s (c o n t i n u e d)
S t u d e n t W o r k s h e e t : A N u m b e r G u e s s i n g G a m e - S O L U T I O N

 The Bisection Method

An optimal strategy to approach the number guessing game is the bisection method:
Start by asking “Is it (strictly) greater than 50?” If the answer is “yes” proceed with “Is it
greater than 75?”, if not, ask “Is it greater than 25?” Continue in this manner of always
asking for the middle number until there is only one option left. For example:

(The number is 54)
Is it greater than 50? Yes
Is it greater than 75? No
Is it greater than 63? No
Is it greater than 57? No
Is it greater than 54? No
Is it greater than 52? Yes
Is it greater than 53? Yes
So after 7 questions it is clear that the number must be 54. (There are cases in which only
6 questions are necessary. In fact, the average number of questions is log 100 = 6.64.)

This is an optimal method because with every question the set of possible numbers is split
in two approximately equal parts, with one containing the required number. In fact, for
this problem, every method that halves the possible numbers per question is optimal.
Another solution would be to ask questions such as “Is the number divisible by 2?”

 Optional: Find the Complexity

The complexity of the bisection method is logarithmic, i.e. of order O(log N). This is a
consequence of halving the possible numbers at every question.

If all integers are allowed, then no method can solve the problem in finite time.

 Complexity – It's Simple Page 8 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

F o r T e a c h e r s :
T e a c h e r R e s o u r c e s (c o n t i n u e d)
S t u d e n t W o r k s h e e t : S o r t i n g A l g o r i t h m s - S O L U T I O N

 Bubble Sort

If the deck is not sorted, there will be at least two consecutive cards that are not in the
correct order. The algorithm will eventually swap these two cards. Therefore, if there are
no more cards to be swapped, the algorithm terminates and the deck is sorted.

Bubble Sort has the advantage of being very simple to implement, but it is not as efficient
as more advanced sorting algorithms such as merge sort (see below). The run time
complexity of bubble sort for n cards is quadratic, or O(n2).

 Faster Sorting Algorithms

While the run time complexity of bubble sort is quadratic, better methods exist. For
example merge sort has a run time complexity of O(n log n) for n cards. An interesting
feature of merge sort is that its structure allows it to be parallelized. Another algorithm
with run time complexity O(n log n) that is often used in practice quick sort. It generally
performs well even though its run time complexity is quadratic and thus worse than that
of merge sort. It is also common to use hybrid versions of different sorting algorithms to
adapt to specific problems. For a derivation of these results see T. H. Cormen et al.,
Introduction to Algorithms.

For sorting based on comparing individual items, there is no method with a worst case run
time complexity better than O(n log n) that does not exploit parallel operations such as
merging different stacks of cards at the same time. This is because n cards can be
ordered in nn different ways, and each comparison can half the number of possible
orderings, leading to a complexity of O(log (nn)) = O(n log n).

 Complexity – It's Simple Page 9 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

S t u d e n t R e s o u r c e : G r o w t h o f S e q u e n c e s

 The Growth of a Sequence

Why is it better to choose a small reward that doubles every time than a large reward that
stays the same? Such considerations can be very important in for example in economics
or when trying to find the most efficient way to solve a problem. Mathematics can be very
useful in understanding the principles governing processes evolving over time.

Let's look at some sequences:

• 5, 10, 15, 20, 25, 30, …
• 1, 4, 9, 16, 25, 36, …
• 2, 4, 8, 16, 32, 64, …

The pattern in a sequence can be described by growth functions. These patterns are
what computer scientists commonly call algorithms. Such a function answers the
question: “What's the number in the sequence at a given position n?” In the examples
above these growth functions are:

• Linear: 5 x n – in each step the number grows by 5
• Quadratic: n x n = n2 – in each step the number is multiplied by itself
• Exponential: 2 x 2 x … x 2 = 2n – in each step the previous number is doubled

Such sequences can indicate how great a (positive) reward is at each step or how high a
(negative) resource requirement such as energy or time is at each step. Engineers are
often concerned with maximizing a reward or minimizing a resource requirement, so they
compare these sequences with each other. In the three examples above, you can see that
the first sequence overtakes the second sequence and third second sequence overtakes
the other two sequences.

 Optional: Big-O Notation

Engineers like to write in precise and clear ways, so when comparing the above sequences
this is rather written as

 O(5 x n) < O(n2) < O(2n)

Such an inequality immediately allows comparing the growth of sequences.

The mathematical notation above is called big-O notation and describes an upper bound
on the sequence for all indexes n greater than a (fixed) index m. Constant factors are
usually omitted and so O(5 x n) = O(n). Can you guess why O(5 x n + 1) = O(n)? (Hint:
Choose m and omit the constant factor.)

Therefore, in big-O notation only the fastest growing function is considered.

 Complexity – It's Simple Page 10 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

S t u d e n t R e s o u r c e : A l g o r i t h m s

 What is an Algorithm?
A computer can be used to perform a plethora of tasks that can help us with our work.
Sometimes these tasks are easy to describe in words, such as “sort this deck of cards”, or
“find the fastest way from Paris to New York”. However, for a computer these tasks might
be very hard to solve. Internally a computer can only perform rather primitive
operations and only their correct arrangement solves a problem. Such an arrangement is
called an algorithm. Since each primitive operation takes some time (a few nanoseconds
in a modern computer), an algorithm requires a certain run time in order to finish its
task.

 Why are Some Algorithms Better than Others?
Each task requires a specially designed algorithm that can solve it. Sorting a set of cards
cannot be done with an algorithm that is designed to find the shortest path between two
cities. Also, quite intuitively, sorting a deck of 200 cards takes longer than sorting just 52
cards (or in the trivial case, 2 cards). Therefore the run time depends on the problem and
its size (computer scientists speak of a problem instance).

Algorithms should be compared independently of the problem instance (otherwise the best
algorithm would always be to just immediately give the answer calculated before.) This is
where the concept of the growth of a sequence comes in useful: The size of the problem
can be regarded as the parameter n in a sequence that is specific to the algorithm. There
are therefore algorithms of various complexity, corresponding to the sequence describing
them. Algorithms are then compared by comparing the growth of the sequences.
Therefore an algorithm of quadratic complexity is better than an algorithm of exponential
complexity.

 Complexity - it's Useful
The efficiency of algorithms is crucial for a plethora of current computing applications.
Some problems are very hard to solve because the only known algorithms solving them
have a very high complexity.

A widely known example of high complexity is the traveling salesman problem (TSP). In
this problem, a trader wants to do business in a set of cities. He wants to find the shortest
possible route between these cities without visiting any city more than once, and he wants
to come back to his starting city at the end of his itinerary. Solving this efficiently would
be very useful for the assignment of routes for airplanes, scheduling of tasks on machines
and even the manufacturing of microprocessors.

While the complexity of the TSP prevents an efficient solution of these problems, for some
applications, high complexity can even be desirable. When an encrypted message is sent,
it should be very hard to get at the transmitted information without knowing some shared
secret. In this case, the encryption is designed in such a way that the decryption has a
very high complexity and thus eavesdropping is prevented. Secure communication would
not be possible without the high complexity of decryption. These examples and numerous
others show that knowing the complexity of a problem is very useful for computing and
beyond.

 Complexity – It's Simple Page 11 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

S t u d e n t W o r k s h e e t : T h e G r o w t h o f S e q u e n c e s

 Water Lilies

On a pond there is a single water lily. Every week the number of water lilies on the pond
doubles. The pond is completely covered by water lilies after 10 weeks. After how many
weeks is only half the pond covered by water lilies? Explain your reasoning.

 How much can they carry?

The weight that a skeleton can carry is proportional to its cross-sectional area. The weight
of an animal is proportional to its volume. Why do you think an ant can carry ten to fifty
times its own weight while a human can hardly carry its own weight? (Hint: Compare the
growth of an area and a volume.)

 Complete the Sequences

Find the next two elements in each of the following sequences.

• 2, 2, 2, 2, ___, ___
• 3, 6, 9, 12, 15, ___, ___
• 4, 9, 16, 25, ___, ___
• 2, 5, 10, 17, 26, ___, ___
• 64, 96, 112, 120, 124, ___, ___

For the first three sequences, also find their respective growth function (in terms of n).

Which sequence grows slowest?

Which sequences grows fastest?

 Complexity – It's Simple Page 12 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

S t u d e n t W o r k s h e e t : A N u m b e r G u e s s i n g G a m e

Work together with your neighbor. One of you has to think of a number between 1 and
100. Don't tell it to your partner yet. The aim of your partner is to guess that number in
as few tries as possible. You are only allowed to answer questions with “yes” or “no”.
Once your partner has found the correct number, switch roles.

 The Bisection Method

You are only allowed to ask questions such as “Is the number greater than 20?” or “Is the
number greater than 54?” What is the best strategy you can find in this case? How many
tries do you need in the worst case?

Explain in a few words why your method is optimal.

 Optional: Find the Complexity

Can you find a sequence describing how many questions are required in the worst case if
numbers from 1 to N are allowed? The answer is best expressed in big-O notation. (Hint:
Try the logarithm.) What happens if all integers are allowed?

If you want to know more about finding the complexity, you can look at the book by T. H.
Cormen et al., Introduction to Algorithms or at the website
http://www.londoninternational.ac.uk/current_students/programme_resources/cis/pdfs/su
bject_guides/level_2/cis226_vol2/cis226_chap1.pdf

 Complexity – It's Simple Page 13 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

S t u d e n t W o r k s h e e t : S o r t i n g A l g o r i t h m s

You will now look at a few sorting methods. Your teacher will give you cards and you will
learn two different sorting methods.

To mimic the behavior of a computer, you can only to perform certain simple operations:
You are allowed to look at two cards at a time, compare them and move them wherever
you want, depending only on the values of the two cards. Such operations could include
swapping the cards, inserting one card before the other, etc. Of course, you may also
open new auxiliary stacks of cards.

However, you are not allowed to just look at all the cards, remember their value and
immediately place them in the right position.

 Bubble Sort

Get in groups of three. Each group will get eight cards. Shuffle the cards and place the
cards face down on the table.

A simple method for sorting is bubble sort. Apply the following steps to your 8 cards:

1. Look at the first two cards and compare them
2. Swap the cards (if necessary) so that they are in increasing order
3. Now look at the second and third card and swap them if they are not in increasing

order
4. Continue doing so until you reach the seventh and eighth card. Swap them if

necessary
5. Now repeat steps 1-4 until you don't need to do any more swaps.

The first few swaps are illustrated
in the figure to the right. The first
two cards need to be swapped, in
the center the cards are already
in the correct order and the “8”
and the “3” need to be swapped
again.

After completion, turn over all the
cards and check whether they are
sorted. Explain in a few words
why this method works.

Optional: Get in groups of five to
ten and find your own sorting
method using only the allowed
operations as explained above.
Can you get any better than
bubble sort? Why / why not?

 Complexity – It's Simple Page 14 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

T e a c h e r R e s o u r c e :
A l i g n m e n t t o C u r r i c u l u m F r a m e w o r k s

Note: Lesson plans in this series are aligned to one or more of the following sets of standards:
• U.S. Science Education Standards (http://www.nap.edu/catalog.php?record_id=4962)
• U.S. Next Generation Science Standards (http://www.nextgenscience.org/)
• International Technology Education Association's Standards for Technological Literacy

(http://www.iteea.org/TAA/PDFs/xstnd.pdf)
• U.S. National Council of Teachers of Mathematics' Principles and Standards for School

Mathematics (http://www.nctm.org/standards/content.aspx?id=16909)
• U.S. Common Core State Standards for Mathematics (http://www.corestandards.org/Math)
• Computer Science Teachers Association K-12 Computer Science Standards

(http://csta.acm.org/Curriculum/sub/K12Standards.html)

 Principles and Standards for School Mathematics
 Algebra Standard
 As a result of activities, all students should develop

 Understand patterns, relations, and functions.
 Use mathematical models to represent and understand quantitative

relationships.
 Problem Solving Standard
 As a result of activities, all students should develop

 Apply and adapt a variety of appropriate strategies to solve problems.
 Monitor and reflect on the process of mathematical problem solving.

 Common Core State Standards for Mathematics Grades 9-12 (ages 14 – 18)
Algebra Standard
- Reasoning with Equations & Inequalities
o Solve equations and inequalities in one variable
 CCSS.Math.Content.HSA-REI.B.3 Solve linear equations and inequalities in

one variable, including equations with coefficients represented by letters.
Functions Standard
- Building functions
o Build a function that models a relationship between two quantities
 CCSS.Math.Content.HSF-BF.A.2 Write arithmetic and geometric sequences

both recursively and with an explicit formula, use them to model situations,
and translate between the two forms.

- Linear, Quadratic, and exponential models
o Construct and compare linear, quadratic, and exponential models and solve

problems
 CCSS.Math.Content.HSF-LE.A.1 Distinguish between situations that can be

modeled with linear functions and with exponential functions.
 CCSS.Math.Content.HSF-LE.A.1c Recognize situations in which a quantity

grows or decays by a constant percent rate per unit interval relative to
another.

http://www.nap.edu/catalog.php?record_id=4962
http://www.nextgenscience.org/
http://www.iteea.org/TAA/PDFs/xstnd.pdf
http://www.nctm.org/standards/content.aspx?id=16909
http://www.corestandards.org/Math
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://www.corestandards.org/Math/Content/HSA/REI/B/3
http://www.corestandards.org/Math/Content/HSF/BF/A/2
http://www.corestandards.org/Math/Content/HSF/LE/A/1
http://www.corestandards.org/Math/Content/HSF/LE/A/1/c

 Complexity – It's Simple Page 15 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

T e a c h e r R e s o u r c e :
A l i g n m e n t t o C u r r i c u l u m F r a m e w o r k s

 Standards for Technological Literacy – All Ages
 The Nature of Technology

 Standard 1: Students will develop an understanding of the characteristics
and scope of technology.

 Standard 2: Students will develop an understanding of the core concepts of
technology.

 Standard 3: Students will develop an understanding of the relationships
among technologies and the connections between technology and other fields
of study.

The Designed World
 Standard 17: Students will develop an understanding of and be able to select

and use information and communication technologies.

CSTA K-12 Computer Science Standards Grades 6-9 (ages 11-14)
5. 2 Level 2: Computer Science and Community (L2)
 Computational Thinking (CT)

3. Define an algorithm as a sequence of instructions that can be processed
by a computer.
4. Evaluate ways that different algorithms may be used to solve the same
problem.
5. Act out searching and sorting algorithms.
8. Use visual representations of problem states, structures, and data (e.g.,
graphs, charts, network diagrams, flowcharts).
9. Interact with content-specific models and simulations (e.g., ecosystems,
epidemics, molecular dynamics) to support learning and research.

 Collaboration (CL)
3. Collaborate with peers, experts, and others using collaborative practices
such as pair programming, working in project teams, and participating in
group active learning activities.
4. Exhibit dispositions necessary for collaboration: providing useful feedback,
integrating feedback, understanding and accepting multiple perspectives,
socialization.

 Computing Practice & Programming (CPP)
4. Demonstrate an understanding of algorithms and their practical
application.

 Complexity – It's Simple Page 16 of 16
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Complexity – It 's Simple

T e a c h e r R e s o u r c e :
A l i g n m e n t t o C u r r i c u l u m F r a m e w o r k s

CSTA K-12 Computer Science Standards Grades 9-12 (ages 14-18)
5.3 Level 3: Applying Concepts and Creating Real-World Solutions (L3)
5.3.A Computer Science in the Modern World (MW)
 Computational Thinking (CT)

3. Explain how sequence, selection, iteration, and recursion are building
blocks of algorithms.
8. Use modeling and simulation to represent and understand natural
phenomena.

5.3.B Computer Science Concepts and Practices (CP)
 Computational Thinking (CT)

5. Use data analysis to enhance understanding of complex natural and
human systems.
9. Analyze data and identify patterns through modeling and simulation.

