Lesson focuses on how to measure at the nano scale and provides students with an understanding of how small a nanometer really is."Students learn about electron microscopes, participate in hands-on activities to measure common classroom objects in the metric scale, and then convert the result to nanometers.
Lesson focuses on how thermometers have been impacted by engineering over time, and also how materials engineering has developed temperature sensitive materials. Student teams design and build a temperature gauge out of everyday products and test a variety of materials for thermal properties. Students evaluate the effectiveness of their temperature gauge and those of other teams, and present their findings to the class.
Lesson focuses on how wind energy can be generated on both a large and small scale. Student teams design and build a working windmill out of everyday products and learn about anemometer and site testing. Student windmills must be able to sustain the wind generated by a fan or hairdryer at medium speed at 2 feet and rotate, lifting a small object upward. Students evaluate the effectiveness of their windmill and those of other teams, and present their findings to the class.
Lesson focuses on exploring how the development of seismographs has helped save lives around the world. Students work in teams to design their own seismograph out of everyday items, and test its ability to record a simulated classroom earthquake. Students evaluate their own seismographs, those of classmate teams, and present findings to the class.
Lesson focuses on how nanotechnology has impacted the design and engineering of many everyday items, from paint to fabrics. Students learn about the hydrophobic effect and how similar properties can be introduced by reengineering products at the nano level. Students work in teams to develop a waterproof material and compare their results with nano waterproof materials developed recently by engineers and scientists.
Lesson focuses on exploring how the development of global positioning systems has revolutionized both defense and consumer product engineering. Students work in teams to understand the technology behind GPS, explore current applications, and brainstorm new applications for global use of GPS. They use both a simple GPS handheld device and online resources to understand the functioning and potential of this engineering technology.
Lesson focuses on the engineering behind storage devices, and engineering improvements over time. Though exploring the operation of the "floppy" disk, students explore the mechanics underlying operation, and then test the disk under a variety of conditions.
Lesson focuses on how infrared technology is used by engineers creating equipment and system for a variety of industries. Teams of students explore the application of infrared in remote controls, test materials that encourage or prevent infrared transmission, and develop systems that allow transmission of infrared in restricted environments.
Develop a robot arm using common materials. Students will explore design, construction, teamwork, and materials selection and use.
Lesson focuses on computer and mechanical engineering and explores how computer mice operate and how engineering provided an interface between man and machine.

Pages

Search Lesson Plans

and/or

 
Quickstart: we have resources for Students, Parents, Teachers, and Guidance Counselors