facebook twitter mail share

Aerospace Engineering

Aerospace engineers create machines, from airplanes that weigh over a half a million pounds to spacecraft that travel over 17,000 miles an hour. They design, develop, and test aircraft, spacecraft, and missiles and supervise the manufacture of these products. Aerospace engineers who work with aircraft are called aeronautical engineers, and those working specifically with spacecraft are astronautical engineers.


    
          Aerospace Engineering

Aerospace engineers develop new technologies for use in aviation, defense systems, and space exploration, often specializing in areas such as structural design, guidance, navigation and control, instrumentation and communication, or production methods. They often use computer-aided design (CAD) software, robotics, and lasers and advanced electronic optics. They also may specialize in a particular type of aerospace product, such as commercial transports, military fighter jets, helicopters, spacecraft, or missiles and rockets. Aerospace engineers may be experts in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, or guidance and control systems.

Aerospace engineers typically are employed in the aerospace product and parts industry, although their skills are becoming increasingly valuable in other fields. For example, in the motor vehicles manufacturing industry, aerospace engineers design vehicles that have lower air resistance and, thus, increased fuel efficiency.

More detailed information about Aerospace Engineering is available on the Career Cornerstone Center's Aerospace Engineering site.

Career Guidance Suggestions for Pre-University Students: Pre-University students should take as many math and science courses as possible, both during school and as part of after-school programs. Students aged 5-9 should do additional math, puzzles, and building or design projects. Students aged 9-12 should take extra math, and if inspired, explore pre-algebra and geometry. Students aged 12-18 might consider taking advanced algebra, chemistry, calculus, geometry, trigonometry, physics, building, design, and engineering concept courses.

There are also several lessons and activities, and projects and competitions that can help provide students with an interest in engineering first hand exposure to electrical engineering principals. Students who implement these activities and participate in projects or competitions have a better understanding of engineering and its impact on society. They'll be better able to determine if engineering is the career path for them by sharing their interest with other students, and experiencing hands-on applications of engineering. Summer programs and internships are another great way for students at the pre-university level to explore engineering.

Engineering Majors

More than 25 major specialties are recognized in the fields of engineering and engineering technology. Select a degree field from the list below to find out more:

 

Get Involved!

Find opportunities for pre- university, undergraduate, and graduate students all over the world.

getinvolved

more

 

Insights from Experts

Experts tackle some of the most important questions for students who might be interested in pursuing an education or career in engineering.

more

 

Life of an Engineer

Find out what it takes to be a successful engineering student and professional engineer. A series of profiles will help you understand the challenges and rewards you might face.

more

 
Quickstart: we have resources for Students, Parents, Teachers, and Guidance Counselors